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Abstract. A real-space renormalization group method which allows the direct calculation of 
the order parameter for magneticsystems is extended to quantum problems. The procedure 
is applied to the spin4 Heisenberg ferromagnet on a square lattice in the presence of an 
[sing-like anisotropy. The results obtained are satisfactorily compared with experimental 
data on uncoupled ferromagnetic thin films in the monolayer range. 

Phase transitions in quantum systems have been treated within the real-space renor- 
malization group (RG) frameworks (see, for a review, [l]) over recent years. The 
Heisenberg ferromagnet and variations of it had been treated through RG by many 
workers [2-71, mainly regarding its phase diagram and thermal critical exponents. It is 
also desirable to obtain the  thermodynamic functions for these quantum problems. In 
fact, RG methods are available [8, 91 for calculating the free energy, and through it  
the other thermodynamic functions, for arbitrary values of the external parameters. 
However, these procedures tend to be operationally heavy. In order to make the 
calculations easier, a simple RG formalism was introduced [lo], which yields directly 
(without going through the calculation of the free energy) the order parameter for 
arbitrary temperatures T. 

In the present work, an extension of this formalism to quantum systems is applied to 
the spin4 anisotropic Heisenberg ferromagnet on a square lattice. This is an interesting 
problem not only from the theoretical point of view but also because of its possible 
relation [ll] to uncoupled ferromagneticfilmsin the monolayer regime, such asepitaxial 
overlayers of Fe on Au(100) and polycrystalline layers of Permalloy (80% Ni-20% Fe) 
on Ta [ 121. The main features of the magnetization of these uncoupled films are an initial 
decrease in the magnetization with increasing T slower than the decrease which the 
spin-wave theory predicts [13] and a sharp drop in the magnetization as the critical 
temperature is approached. The lack of low-energy magnetic excitations in the 
uncoupled films has been suggested [12] to be a universal property of ultrathin ferro- 
magnetic films, independent of substrate, film material and crystalline structure. 

Let us now consider the dimensionless Hamiltonian 

H = K[(1 - A)(@u; i @'U!) + oju;] (1) 
(id? 

where K = J/k,Tand the summation runs over all pairsof nearest-neighbour sites on a 

0953-8984/91/469115 t 07 $03.50 @ 1991 IOP Publishing Ltd 9115 



I' 

- 

square lattice. The o-matrices are the standard Pauli matrices associated with spins 1 
and A is the anisotropy in spin space. The particular cases A = 1, A = 0 and A = --?D 

correspond, respectively, to the king, isotropic Heisenberg and XY models. 
Following alongthelinesof [IO] inorder tofind theequation for theorder parameter, 

an elementary dimensionless magneton p is associated with each site of a &dimensional 
lattice of linear size L ;  K and A are associated with each bond of this lattice. The order 
parameter is defined. in the L- =limit. as M = N , ( K ,  A ) / L D .  N,(K, A) is the thermal 
canonical average number of sites whose spin r-projection is pointing in the easy- 
magnetization direction minus those whose spin r-projection isin the opposite direction. 
This system of LD sites is renormalied into L'D cells, each of linear size B = L/L'  > 1. 
The variables K', A' and p' associated with this new system can be expressed in terms 
of the old variables. The order parameter is now M ( K ' ,  A') = N,.(K. A ' ) / L ' D .  Any 
component of the total magnetic moment (extensive quantity) must remain the same in 
both original and renormalized systems: 

NLs(K ' ,  A')p' = NL(K,  A)p. (2) 
Equation (2) implies, following the same steps as in [IO]. that, for a point ( K ,  A) 
belonging to the ordered phase, 

M(K. A)  = lim (pC'"'/BnD) (3) 
n- I 

withn thenumberofiterationsofthe~Gprocedure. Ifthe point belongs tothedisordered 
phase. equation (2) implies that M(K, A )  = 0 ,  as desired. 

Equation (3) has to be used together with the RG recursion relations for K ,  A and p.  
The equations for K and A used here were obtained in 1141. The formalism (14. 151 is 
cluster based, in which two-rootedgraphs are used(see, forexample, the transformation 
in figure 1, which is adopted here and is associated [lo] with BD = 5). This procedure is 
briefly outlined in the following. If a graph G is renormalized into a smaller graph G', 
the correlation function between the two terminalsof the graphs must be preserved. For 
the transformation of figure 1, 

exp(HLd = Tr [exp(ff1~324)1 (4) 
1.4 

with H1234 the Hamiltonian of equation (1) with (i, j )  = (1,3), (3,2), (1,4), (4,Z) and 
(3,4), associated with G, and 

Hi2 = K'[(1 - A ' ) ( ~ u $  + U { U ~ )  + ofor] $. Ki, (5) 
associated with G'. K& is a constant which allows equation (4) to be possible. To find 

F* 

K',A' 
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K ,  A‘ and Kb as functions of K and A, the first step is to find the exact form of the 
expansions of exp(H,,,) and exp(H,?). They are reproduced here. from [14]: 

exp(H;,) = a ‘  + bL2(olo$ + ojo$) + C ; ~ O ~ O $  ( 6 4  

where the coefficients a‘ ,  biz and cia depend on K’, A’ and Kb, and 

exp(H,,,) = a + [bii(@u; + oj’uy) + ciiafu; 
i C j  

+ d,(@:oj. + u~u;)o$of + e j j ( @ C - +  u{u~)(@uf + up{)] 

+ fof 0; 0; U: (66) 

where the coefficients depend on K and A and ( k ,  I )  # ( i ,  j ) .  Performing the trace of 
equation (4) on equation (66) and comparing the result with equation (6a), relations 
between these coefficients are obtained. To find the explicit expressions of these coef- 
ficients in terms of K ,  A, K‘, A’ and K I ,  what is done is to write the original and 
renormalized Hamiltonians matrices in a convenient basis and diagonalize them. For 
Heisenberg Hamiltonians the appropriate basis diagonalizes simultaneously all of. By 
findingthediagonalformsofff;, andH1234itispossible towriteexp(H;,) andexp(HlZ4) 
as matrices in which the elements are functions of K‘, A‘ and K ; ,  and K and A, 
respectively. Finally it is necessary to express the expansions of exp(H;,) and exp(H,,,,) 
in the same basis as before. By comparing these matrices the coefficients ai2 ,  bi2 and 
ci2 are written as functions of K ,  A’ and Kb,  as well as the coefficients a, {bii}, {c ,~} ,  {dii}, 
etc. are written as functions of K and A ,  as desired. 

Through the procedure outlined above the RG relations for Kand A were obtained 
in [14]. These relations yielded [I41 a phase diagram which presents the correct Ising- 
typebehaviourforO<AS l . In theA= l(A=O)limittheexactT,(T,=O)wasfound. 
For other values of A, the critical temperatures are believed [14] to be a very good 
approximation. 

Let us now introduce the procedure to find, in the quantum case. the RG recursion 
relation for p .  In order to break the symmetry, the r-component of the spin at one of 
the terminals of both graphs G and G’ is fixed. The other spins are completely free. Each 
cluster configuration will be weighed with the corresponding Boltzmann factor and will 
be associated with avalue for the z-component of the cluster magnetic moment mz. Each 
site contributes to m‘of a given configuration proportionally to its coordination number 
[lo]. The thermalcanonical average of the r-component of the cluster magnetic moment 
must be preserved through renormalization. For the specific case here, 

(mi$)  = ( m i d  (7) 

i.e. 

Tr[exp(H;d (ai + oi)~’I/Tr[exp(H;21 
2 2 

= Tr [ e ~ p ( H , ~ % )  (2of + 20; + 30; + 3ob)p]/ Tr [ e ~ p ( H , ~ ~ ~ ) ] .  (8) 
2.3.4 2.3.4 

In this equation, the expansions of equations (6a) and (66) are used. Equation (8) 
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Figure2. Normalized magnetization M(T)/M(O)asa functionofthenormalized temperature 
k s T / l  obtained for theHeisenbergferromagnetwith A = 1 (---)compared with the king 
exact result (-) 

detcrmines the recursion relation for p. The expressions that we have calculated for the 
cluster magnetic moments are 

(mi:) = [(a' + ~ [ ~ ) / a ' ] p '  ( 9 4  

(mf234) = + 6~13 + 2 c n ) / a l ~ .  (96) 
These equations expressed as functions of K, A, K', A' and KI, are 

(m; ; )  = [2 exp(K' + K h )  p']/{exp(K' + Kh) 

+ exp(-K' + K')cosh[2K'(1 - A')]] (W 
(mf234) = {lo exp(5K) + 4exp[K(1 - A)] [ A  cosh(KA) - A sinh(KA)]/A 

+ 2exp(-3K t 2KA) - exp[-K(l t A)] [Bcosh(KB) 

- (2  - A) sinh(KB)]/2B - exp(-3K)/2}p/{exp(5K) 

+ exp[K(l - A)] 2cosh (KA) + exp(K) + 2exp(-3K t 2KA) 

+ exp[-K(l + A)] cosh(K5) 

+ exp(K - 2KA)/2 + exp(-3K)/2} (lob) 
withA = [A2 + 16(1 - A)']'"and B = [(Z - A)' i 32(1 - A)2]1n. 

The spontaneous magnetization that we obtain for A = 1 is compared with the 
exact (see, e.&, [16]) magnetization for the king model in figure 2. For intermediate 
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Flgure3. Normalized magnetization.M(T)IM(O) asafuncrionofthe normalized temperature 
KBT/J for A = 1,0.8,0.6.0.4,0.2.0.1,0.05 and 0.005. 

temperaturestheerrorisofthe orderof 10%. Theresultsobtainedforthe magnetization 
for A = 1,0.8,0.6,0.4,0.2,0.1,0.05 and 0.005 are presented in figure 3. By comparing 
the present results and the RG results obtained in [ll], it is found that in both cases the 
magnetization curves have the same shape but, as the critical temperatures in [U] are 
lower (owing to the approximation used), their curves are compressed. 

In the neighbourhood of the critical point, the magnetization is given by M - (1 - 
T/Tc)fl. The exponent p is independent of the value of A (A # 0), as expected on the 
basis of universality arguments: p = 0.197. This value must be compared with the king 
exact value, p = 0.125. Our p is not in good agreement with the exact result, probably 
because of the small cluster used. Other RG estimates for the ZD king exponent 6 using 
small clusters are, for example, p = 0.180 [lo] and p = 0.168 1171. In our case, better 
estimates will probably be obtained if the cluster size was increased, similarly to what 
was shown in [lo] for the classical version of this method; as the size of the clusters 
increases, the calculated 

The asymptotic behaviour at low temperatures has been checked. It follows the 
exponentialform M - 1 - C exp(-NA/ksT),for A # 0,expectedwhen thereisagapin 
themagnonspectrum. CandFareconstants; C = 0.3 andF = 4.9in thisapproximation. 
Only when A = 0 does this gap vanish, since it is due to the anisotropy. This asymptotic 
behaviour is valid for kJ Q AJ. Even for very low values of A (A # 0) this happens, 
but only in a small range of temperatures. In fact, if we want to see this in figure 3 for 
A = 0.005, for instance, an amplification of scale would be necessary. 

When A goes to zero, the magnetization must vanish at any finite T .  One would 
naively think that the system will approach this limit simply by reducing Tc, without 

approaches the exact result. 
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Figure 4. Spin polarization P(T). nor. 
malized IO P(80 K ) ,  for Fe on Au(100) and 
for Permalloy on Ta 1121, as a function of 
the temperature normalized to the critical 
bulk temperature T,: 0.1.8 monolayers 
of Fe: A ,  2.5 monolayers of Fe; a. 1.6 
monolayers of Permalloy; A. 2.6 mono- 
layenof Permalloy: -, present results 
for M ( T ) / M ( R O  K) for A = 0.2 and three 
different ratios ofJiJ,. 

changing the shape of the magnetization curve. As shown in figure 3, the situation for 
A = 0.05 and A = 0.005 clearly is not that one. A possible explanation is the following. 
For low values of A and low T,  the easiest (low energeticcost) spin excitations are in the 
form of collective spin waves. At the criticality, however, the system has king character 
(as can be seen from the RG flux to the Ising attractor on the phase diagram) and there 
is a change in the nature of the excitations (now spin flips). This gives rise to a change in 
the magnetization behaviour between these two regimes. For higher values of A, at low 
T ,  the predominant excitations would be in the form of spin flips (A = 1 is an extreme 
example), implying that there is not such a change of regime when T goes to T,. 
We recall that a similar magnetization behaviour has already been found [ 181 for an 
anisotropic XY ferromagnet on a two-dimensional lattice. In [IS]. both classical and 
quantum versions of this model were treated; the only qualitative difference between 
them is the derivative of the magnetization in the zero-temperature limit. which was 
zero for the quantum case, as in the present results (for A # 0). 

In figure 4 the temperature dependencesof the low-energy cascade spin polarization 
P ( T )  normalized to the polarization measured at T = 80 K (assumed to be proportional 
to M ( T ) / M ( 8 0  K ) )  of epitaxial overlayers of Fe on Au(100) and polycrystalline layers 
of Permalloy on Ta [13] are shown. These experimental data appear together with the 
present results for A = 0.2, for three different ratiosJ/JB (J is the exchange coupling of 
thezDsystemandJ,isthe isotropicbulkcoupling,calculatedinthe thirdreferenceof [3]: 
KcB = JB/kBTcB = 2.91). The data agree remarkably well with the present theoretical 
results. In fact, the low value of A obtained confirms the belief [ 121 that these films are 
associated with weak anisotropies. In this way, the Heisenberg model in ZD reproduces 
the experimentally observed slower decrease in or even constancy (for higher values of 
A) of M ( T )  at low T for uncoupled ferromagnetic films in the monolayer range. 
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